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5 Parabolic induction and restriction via

C∗-algebras and Hilbert C∗-modules

Pierre Clare Tyrone Crisp ∗ Nigel Higson †

Abstract

This paper is about the reduced group C∗-algebras of real reduc-
tive groups, and about Hilbert C∗-modules over these C∗-algebras. We
shall do three things. First we shall apply theorems from the tempered
representation theory of reductive groups to determine the structure of
the reduced C∗-algebra (the result has been known for some time, but
it is difficult to assemble a full treatment from the existing literature).
Second, we shall use the structure of the reduced C∗-algebra to de-
termine the structure of the Hilbert C∗-bimodule that represents the
functor of parabolic induction. Third, we shall prove that the parabolic
induction bimodule admits a secondary inner product, using which we
can define a functor of parabolic restriction in tempered representation
theory. We shall prove in a sequel to this paper that parabolic restric-
tion is adjoint, on both the left and the right, to parabolic induction
in the context of tempered unitary Hilbert space representations.

1 Introduction

The unitary dual Ĝ of a locally compact group G may be topologized through
the uniform convergence on compact sets of matrix coefficient functions. The
reduced dual is the closed subset of Ĝ consisting of (equivalence classes of)
irreducible unitary representations that are weakly contained in the regular
representation on L2(G). The unitary dual identifies naturally, as a topo-
logical space, with the spectrum of the group C∗-algebra C∗(G), while the
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reduced dual identifies with the spectrum of the reduced group C∗-algebra
C∗
r (G), which is the operator norm-closure of the L1-convolution algebra of

G inside the algebra of bounded operators on L2(G). For all this see [Dix77]
or [BdlHV08, Appendix F].

The purpose of this paper is to examine the structure of the reduced dual
and the reduced group C∗-algebra in the case of a real reductive group, for
which the irreducible representations in the reduced dual are precisely Harish-
Chandra’s irreducible tempered representations; see for example [CHH88].
We shall pay special attention to the functor of parabolic induction, which
is not surprising given the dominant role that parabolic induction plays in
constructing irreducible tempered representations.

Let G be a real reductive group and let P be a parabolic subgroup
with Levi factor L (the precise class of groups that we shall consider is
described in Section 3). We shall approach parabolic induction through
the (C∗

r (G), C
∗
r (L))-correspondence introduced in [Cla13] (the notation used

there was E(G/N); here we shall use C∗
r (G/N)). The general properties

of this correspondence, especially the fact that C∗
r (G) acts on C∗

r (G/N) by
compact operators (in the Hilbert module sense), contribute in a very helpful
way to the determination of the structure of C∗

r (G). In the reverse direction,
once the structure of the reduced C∗-algebra has been determined, it is not
difficult to determine the structure of the correspondence.

The problems of determining the unitary dual or the reduced dual as
topological spaces, and of determining the structure of the associated C∗-
algebras, have a long history. To give just a sampling of interesting advances
we offer the list [Fel60, Lip70, Mil73, BM76, PP83, Val85, Was87]. The final
paper in the list, a short announcement by Wassermann, gives in some sense
the final word on the subject in the case of the reduced C∗-algebra. But it
relies on a short announcement [Art75] by Arthur on the structure of the
Harish-Chandra Schwartz algebra of a real reductive group, and neither of
Wassermann’s nor Arthur’s announcements were followed by detailed pub-
lished accounts. Because of this, and because in any case a direct approach
through C∗-algebras, rather than Schwartz algebras, is a bit more economical
(see for example the use of elementary C∗-algebra ideas in Lemmas 5.10, 5.12
and 5.14), we felt it worthwhile to provide an account of the matter here.

We should emphasize the obvious, that the structure theorem for C∗
r (G)

relies very heavily on results from tempered representation theory, due mostly
to Harish-Chandra and Langlands. Our contribution is to indicate how the
structure of C∗

r (G) can be obtained as a relatively simple consequence of

2



these results.
Actually our main interest is parabolic induction, not the structure of

C∗
r (G), and in our view the main contribution of this paper lies there. It is

shown in [Cla13] that if Hτ is the Hilbert space of a tempered representation
τ of L, then the Hilbert module tensor product

C∗
r (G/N)⊗C∗

r (L) Hτ ,

which is a Hilbert space carrying a representation of C∗
r (G), is the representa-

tion of G parabolically induced from τ . In the final part of this paper we shall
construct a functor of parabolic restriction, from tempered representations of
G to tempered representations of L.

To do so we shall study the adjoint module C∗
r (N\G) = C∗

r (G/N)∗. As a
vector space this is simply the complex conjugate of C∗

r (G/N), and we equip
it with the structure of a C∗

r (L)-C
∗
r (G)-bimodule using the formula

b · e · a = a∗eb∗.

Our main observation is that C∗
r (N\G) carries a compatible (C∗

r (L), C
∗
r (G))-

correspondence structure, namely a compatible, complete, C∗
r (G)-valued in-

ner product, hence a secondary norm which is equivalent to the original one.
We can then define parabolic restriction using the Hilbert module tensor
product

C∗
r (N\G)⊗C∗

r (G) Hπ,

which carries tempered representations of G to tempered representations of
L. The details are given in Section 8. It is not difficult to calculate the
functor, given all the structure theory in the preceding sections, and we
shall give some examples in Section 8. But the most important feature of
the parabolic restriction functor is that it is both left and right adjoint to
the functor of parabolic induction between categories of tempered unitary
representations. This we shall prove in a separate paper [CCH14] (the proof
is not difficult, but it involves a quite different set of ideas from operator
space theory that would be a bit out of place in the present paper).

Of course, the presence of an adjoint to parabolic induction on both
sides calls to mind Bernstein’s second adjoint theorem in the representation
theory of p-adic reductive groups [Ber92, Chapter 3]. We hope to return
to the relationship between the second adjoint theorem and our bimodule
elsewhere (for a few preliminary comments, see Remark 8.9 in this paper).
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But at the moment, a full understanding of the parabolic restriction functor
introduced here is beyond our reach. It would be especially interesting to
obtain a geometric perspective on parabolic restriction and the second adjoint
theorem in the real case (compare [BK11] for the p-adic case).

In the final section of the paper we shall explain the relation between
our parabolic restriction functor and the Plancherel formula. Using Harish-
Chandra’s wave packets we give a simple explicit formula for the C∗

r (G)-
valued inner product on (a dense subspace of) C∗

r (N\G).

2 Compact Operators on Hilbert Modules

Throughout the paper we shall use the language of Hilbert modules over
C∗-algebras. For background information we refer the reader to [Lan95].1 In
this section we shall fix some terminology and notation, and describe some
specialized ideas concerning group actions that will soon feature prominently.

Compact Operators

2.1 Definition. Let C be a C∗-algebra, and let H1 and H2 be Hilbert C-
modules. We shall denote by B(H1,H2) the space of bounded operators
T : H1 → H2 that possess an adjoint T ∗ : H2 → H1, characterized by the
usual formula

〈Tv1, v2〉 = 〈v1, T
∗v2〉

for all v1 ∈ H1 and all v2 ∈ H2. We say that T is adjointable if it possesses
an adjoint.

2.2 Definition. An adjointable operator in B(H1,H2) is compact if it lies
in the operator norm-closure of the linear span of the elementary operators

v2 ⊗ v
∗
1 : v 7→ v2〈v1, v〉

determined by vectors v1 ∈ H1 and v2 ∈ H2. We shall denote by K(H1,H2)
the closed subspace in B(H1,H2) consisting of all compact operators.

See [Lan95, Chapter 1]. The algebra K(H) of all compact operators on
a single Hilbert C-module H is in fact a C∗-algebra (so is the algebra of all
bounded, adjointable operators, but this will play a lesser role).

1Whereas the term Hilbert C∗
-module is used in [Lan95], here we shall use the con-

tracted form Hilbert module.
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Group Actions

Let H be a Hilbert module over a C∗-algebra C. We shall need to consider
group actions on the C∗-algebra K(H) that are constructed from the following
sorts of automorphisms of H:

2.3 Definition. By a twisted unitary automorphism of H we shall mean the
following data:

(a) an automorphism c 7→ α(c) of the C∗-algebra C, and

(b) a complex-linear automorphism v 7→ U(v) of H, with the property that

(i) U(vc) = U(v)α(c) for all v ∈ H, all c ∈ C, and

(ii) 〈U(v1), U(v2)〉 = α(〈v1, v2〉) for all v1, v2 ∈ H.

We shall say that the automorphism U : H → H covers the C∗-algebra au-
tomorphism α : C → C.

2.4 Example. Let X be a locally compact space, and let

w : X −→ X

be a homeomorphism. Let E be an equivariant Hermitian vector bundle over
X, and let

w̃ : E −→ E

be a homeomorphism that covers w and is fiberwise a unitary vector space
isomorphism. Let C = C0(X) and let H be the Hilbert C-module of contin-
uous sections of E vanishing at infinity on X. Then the formulas

αw(f)(x) = f(w−1x) and Uw̃(v)(x) = w̃(v(w−1x)) ∈ Ex

define a twisted unitary automorphism of H.

2.5 Definition. Suppose that u is a unitary element in C, or in the multiplier
algebra of C; see [Ped79, Section 3.12] or [Lan95, Chapter 2]. The multiplier
C∗-algebra contains C as a closed, two-sided ideal, and the right C-action on
H extends uniquely to the multiplier algebra. Because of this, we can define
a twisted unitary automorphism of H as follows:

(a) α(c) = ucu∗ for all c ∈ C, and
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(b) U(v) = vu∗ for all v ∈ H.

We shall call U an inner twisted unitary automorphism of H.

Every twisted unitary automorphism g = (α, U) of a Hilbert module H
induces an ordinary C∗-algebra automorphism

Adg : K(H) −→ K(H),

since if an operator T : H → H is compact in the sense of Definition 2.2, then
so is the composition

(2.1) Adg(T ) = U ◦ T ◦ U−1 : H −→ H.

In fact

(2.2) g(v2 ⊗ v
∗
1) = U(v2)⊗ U(v1)

∗.

2.6 Lemma. If g is an inner automorphism of H, then the induced auto-
morphism Adg of K(H) is the identity automorphism.

Assume now that a group W acts by automorphisms2 on the C∗-algebra
C. Assume that associated to each element w ∈ W we are given a twisted
unitary automorphism

Uw : H −→ H

that covers w. In addition, assume that for all w, z ∈ W the composition

H
Uw−→ H

Uz−→ H

is the composition of Uzw with an inner automorphism (on either the left
or the right). Necessarily3 the inner automorphism covers the identity auto-
morphism of C; that is, it is constructed, as in Definition 2.5, from a central
unitary u in C or in the multiplier algebra of C.

2.7 Definition. In this situation we shall say that the group W acts projec-
tively on the Hilbert module H.

2More generally we could consider an action by outer automorphisms, that is, an action
modulo inner automorphisms. But this extra generality will not be needed for the examples
we shall consider in this paper.

3This would not be so if we were considering outer actions; see the previous footnote.
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Such a projective action of W on H induces an ordinary action of W by
C∗-algebra automorphisms on K(H), and we shall be studying throughout
the paper the associated fixed-point algebra:

2.8 Definition. We shall denote by K(H)W the fixed-point C∗-subalgebra
of K(H) under the above action.

2.9 Remark. Given any projective action we can form the group extension

(2.3) 1 −→ Inn(H) −→ W̃ −→W −→ 1,

in which Inn(H) is the group of inner automorphisms of H associated to cen-

tral unitary elements of C or its multiplier algebra, while W̃ is the Cartesian
product Inn(H)×W as a set, but with group structure

(U1, w1)(U2, w2) = (U12, w1w2)

where
U1Uw1

U2Uw2
= U12Uw1w2

: H −→ H.

There is then an actual (rather than projective) action of W̃ on H by twisted

unitary automorphisms. The fixed point algebras associated to W̃ and W
are the same.

Hilbert Correspondences and Tensor Products

2.10 Definition. Let B and C be C∗-algebras and let H be a Hilbert
C-module. We shall call H a correspondence from B to C, or a (B,C)-
correspondence if it is equipped with an action homomorphism of C∗-algebras

(2.4) B −→ B(H).

2.11 Definition. Let E be a Hilbert B-module and let H be a correspon-
dence from B to C. The interior tensor product E ⊗B H is constructed from
the algebraic tensor product E ⊗alg

B H by completion in the norm associated
to the C-valued inner product

〈
e1 ⊗ v1, e2 ⊗ v2

〉
C
=

〈
v1, 〈e1, e2〉Bv2

〉
C
.

On the right hand side, the element 〈e1, e2〉B ∈ B is regarded as an operator
on H via the action homomorphism (2.4).
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See [Lan95, Proposition 4.5] for details. If E is a Hilbert correspondence
from A to B, then the interior tensor product is a correspondence from A to
C.

2.12 Lemma. If E is a Hilbert B-module, if B acts on a Hilbert C-module
H through compact operators, and if S is a compact operator on E , then S⊗I
is a compact operator on E ⊗B H.

Proof. This follows directly from [Lan95, Proposition 4.7].

For the rest of this section we shall be concerned with the situation in
which a finite group W acts projectively on a Hilbert C-module H by twisted
unitary automorphisms, as in the previous section. We shall take

(2.5) B = K(H)W ,

which acts on H in the obvious way and gives H the structure of a corre-
spondence from B to C.

We shall examine the structure of the interior tensor product E ⊗B H in
this case, and the structure of the C∗-algebra K(E⊗BH) of compact operators
on the tensor product.

2.13 Lemma. If H and B are as above, then the formula

Uw(e⊗ v) = e⊗ Uw(v)

defines a projective action of W by twisted unitary automorphisms on the
interior tensor product E ⊗B H.

Proof. The action on the algebraic tensor product is isometric in the interior
tensor product norm, and so extends to the completion E ⊗B H. The com-
patibility conditions in Definition 2.3 can be checked on the algebraic tensor
product, and then they extend by continuity to the completion.

Now let e ∈ E . The formula

(2.6) Te : v 7→ e⊗ v

defines an operator Te : H → E ⊗B H with adjoint

(2.7) T ∗
e : f ⊗ v 7→ 〈e, f〉v.
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2.14 Lemma. Each of the operators Te in (2.6) is compact andW -equivariant.

Proof. The W -equivariance of Te is clear from the definition of the action
in Lemma 2.13. Assuming, as we are in (2.5), that B acts on H through
compact operators, the composition

T ∗
e Te : v 7→ 〈e, e〉v

is evidently compact. Therefore Te is compact, too.

Now consider the map

(2.8) E −→ K(H, E ⊗B H)
W

that sends e ∈ E to the compact operator Te. Consider the target space as a
Hilbert B-module under the inner product

〈S, T 〉 = S∗T ∈ K(H)W .

2.15 Proposition. The map (2.8) is an isometric isomorphism of Hilbert
B-modules.

Proof. Consider the diagram of isometric isomorphisms of Hilbert B-modules

E
∼=
←− E ⊗B B

∼=
−→ E ⊗B K(H)W ,

in which the left-hand map is multiplication and the right-hand map simply
recalls the definition of B in (2.5). Using the isomorphisms, we can think of
(2.8) as a map

E ⊗B K(H)W −→ K(H, E ⊗B H)
W .

On elementary tensors the map has the form

e⊗ (v1 ⊗ v
∗
2) 7→ (e⊗ v1)⊗ v

∗
2,

It preserves inner products and has dense range, so it is an isometric isomor-
phism.

We turn now to a description of K(E). The formula S 7→ S ⊗ I defines a
homomorphism of C∗-algebras

(2.9) K(E) −→ B(E ⊗B H).

See [Lan95, p.42].
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2.16 Lemma. The operators S ⊗ I are compact and W -invariant.

Proof. TheW -invariance is clear. Compactness is a consequence of Lemma 2.12.

2.17 Proposition. The map S 7→ S ⊗ I determines an isomorphism of
C∗-algebras

K(E)
∼=
−→ K(E ⊗B H)

W .

2.18 Remark. The value of this result is that in our application the C∗-
algebra C will have a very simple structure—in fact it will be abelian, and
it will be easy to calculate the tensor product E ⊗B H.

Proof of the Proposition. It is proved in [Lan95, Proposition 4.7] that the
homomorphism is injective, and moreover it is proved there that the homo-
morphism is an isomorphism when W is trivial. The following small modifi-
cation of the argument in [Lan95] handles surjectivity in the general case. It
suffices to show that the operator

(2.10) Average
[
(e2 ⊗ v2)⊗ (e1 ⊗ v1)

∗
]
∈ K(E ⊗B H)

W

lie in the image of our homomorphism of C∗-algebras, where the average is
taken over the W -action on compact operators. The operator (2.10) acts on
E ⊗B H as follows:

(2.11) e⊗ v 7→
1

|W |

∑

w∈W

e2 ⊗ Uw(v2)
〈
Uw(v1), 〈e1, e〉 v

〉
.

Here, in the case of a projective action, we lift each element w ∈ W to an
element of the group W̃ in (2.3) before acting on H; the choice of lift does
not affect the formula. Using (2.2) we can rewrite (2.11) as

e⊗ v 7→ e2 ⊗Average[v2 ⊗ v
∗
1] · 〈e1, e〉 · v,

or equivalently (since the tensor product is over B = K(H)W )

e⊗ v 7→ e2 · Average[v2 ⊗ v
∗
1]⊗ 〈e1, e〉 · v.

But this is the formula for the action of the operator S ⊗ I, where

S = e2Average[v2 ⊗ v
∗
1 ]⊗ e

∗
1 ∈ K(E),

and so the proof is complete.
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Direct Sums

In the coming sections the C∗-algebrasB of concern to us, namely the reduced
group C∗-algebras of reductive groups, will be direct sums of C∗-algebras of
the type K(H)W considered in the last section. Thus we shall be considering
C∗-algebras of the form

(2.12) B =
⊕

α

Bα =
⊕

α

K(Hα)
Wα.

The direct sum is to be taken in the C∗-algebraic sense, which is to say that
B is the completion of the algebraic direct sum in the supremum norm. The
C∗-algebra operations are defined coordinatewise.

If E is a Hilbert module over B = ⊕αBα, then E decomposes in a unique
way as a direct sum

(2.13) E =
⊕

α

Eα,

with Eα a Hilbert module over Bα. Once again, the direct sum here is the
completion of the algebraic direct sum in the supremum norm, and all op-
erations are defined pointwise (so for example distinct summands of E are
orthogonal to one another, and the inner product of two elements from a
single summand Eα lies in the summand Bα of B).

In the situation displayed in (2.12), applying Proposition 2.15 coordinate-
wise we obtain an isomorphism

(2.14) E
∼=
−→

⊕

α

K(Hα, E ⊗B Hα)
Wα,

which describes the summands Eα. HereHα is given a left action of B through
the projection

B −→ Bα = K(Hα)
Wα.

Similarly, applying Proposition 2.17 coordinatewise we obtain an isomor-
phism

(2.15) K(E)
∼=
−→

⊕

α

K(Eα ⊗B Hα)
Wα.
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3 Reductive Groups and Parabolic Subgroups

We shall not attempt to strive for the utmost generality in the class of groups
we shall consider. Instead we shall aim for (relative) simplicity. This will also
guarantee that the diverse references that we shall cite in the next several
sections will actually cover our class of groups.

Consider first the class of connected, self-adjoint matrix groups. This is
the class of those closed, connected subgroups of the matrix groups GL(n,R)
that are invariant under the transpose operation on matrices. Given such a
group G ⊆ GL(n,R), the connected Lie subgroup GC ⊆ GL(n,C) whose Lie
algebra is the complexification of the Lie algebra of G is a connected (in the
algebraic sense [Hum75, §7.3]) reductive algebraic group defined over R. The
group G is an open subgroup (in the usual analytic topology on matrices)
in the group of real points of this algebraic group. The group of all real
points need not itself be connected, although it has at most finitely many
components.

Although connectedness is a natural assumption, for technical reasons it
will be more convenient to work with the full group of real points. So from
now on, we shall let G ⊆ GL(n,R) be a self-adjoint group which is also the
group of real points of a connected (and necessarily reductive) algebraic group
defined over R. For brevity, we shall simply say that G is a real reductive
group.

This convention excludes some examples that we might otherwise consider
(for instance the group of all matrices with positive determinant), but it has
the winning advantage for us that the class of groups under consideration
now is closed under passage to the standard Levi subgroups whose definition
we shall recall in a moment.

3.1 Definition. Let K = G ∩ O(n), which is a maximal compact subgroup
of G [Kna86, Proposition 1.2].

3.2 Definition. Let A be a maximal abelian subgroup of positive-definite
matrices in G.

3.3 Remark. The group A is not unique, but it is unique up to conjugacy
by an element of K [Kna02, Chap. VII].

The positive-definite group A is isomorphic to its Lie algebra a via the
exponential map. We can use elements of a to define standard Levi subgroups
of G, as follows.

12



3.4 Definition. The standard Levi subgroups of G (for a given choice of
subgroup A ⊆ G) are the subgroups of the form

L = LX = { g ∈ G : exp(tX)g exp(−tX) = g ∀t ∈ R },

associated to elements X ∈ a. They are real reductive groups.

There is a dense open set of elements X ∈ a that all define the same
group L. This particular L is minimal in dimension among all standard Levi
subgroups and indeed is contained in every other standard Levi subgroup
(for example, if G = GL(n,R), and if A is the group of positive diagonal
matrices, then all X with distinct diagonal entries define the same standard
Levi subgroup of diagonal matrices). Fix a connected component of this
dense open set in a, and call it the positive chamber a+ ⊆ a (there are
finitely many choices).

3.5 Definition. The standard unipotent subgroups of G (for a given choice
positive-definite group A and positive chamber a+ ⊆ a) are the closed sub-
groups

N = NX = { g ∈ G : lim
t→+∞

exp(tX)g exp(−tX) = e },

associated to elements X ∈ a+. The standard parabolic subgroups of G are
the closed subgroups

P = PX = LXNX = LN,

associated to elements X ∈ a+.

It is obvious from the definitions that L normalizes N , so the product P =
LN is indeed a subgroup, isomorphic to the semidirect product of L acting
on N by conjugation. In fact P is a closed subgroup of G, diffeomorphic to
the Cartesian product of the spaces L and N [Kna02, Chap. VII §7].

3.6 Example. If G = GL(n,R), and if a+ consists of diagonal matrices
whose entries increase down the diagonal, then the standard parabolic sub-
groups are the various block upper triangular subgroups (for the various
possible sequences of block sizes). Their Levi factors L are the block diag-
onal groups, and the unipotent subgroups N are the block unipotent upper
triangular subgroups.

3.7 Remark. Different choices of chamber a+ ⊆ a are conjugate to one
another via elements of K that normalize a. As a result, different choices of
chamber lead to conjugate families of standard parabolic subgroups.
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4 Parabolic Induction

Fix throughout this section a real reductive group G (along with a choice
of positive-definite subgroup A and positive chamber a+). In addition, fix a
standard parabolic subgroup P = LN ⊆ G, as in the previous section.

Apart from being a subgroup of P = L ⋉ N , the Levi factor L = P/N
is also a quotient. So if τ : L→ U(H) is a unitary representation of L, then
we can consider τ as a representation of P too, and so form the unitarily
induced representation

IndGP τ : G −→ U(IndGP H).

This is the functor of parabolic induction, going from unitary representations
of L to unitary representations of G, and its behaviour on tempered unitary
representations will be our main concern in the rest of the paper.

We shall now recall the construction of the (C∗
r (G), C

∗
r (L))-correspondence

C∗
r (G/N) from [Cla13, Section 2], and then prove a few elementary facts

about it.
As a Banach space, C∗

r (G/N) is a completion of the space of smooth,
compactly supported functions on the homogeneous space G/N . There is a
G-invariant smooth measure on G/N , which is unique up to a multiplicative
constant. We choose it with respect to the fixed Haar measures on G and N
so that ∫

G

f(g) dg =

∫

G/N

∫

N

f(gn) dn d(gN)

for any measurable function f . By G-invariance the natural left translation
action of G on C∞

c (G/N) is unitary for the L2-inner product. There is an
associated convolution action

C∞
c (G)⊗ C∞

c (G/N) −→ C∞
c (G/N)

defined by the usual formula

(4.1) (f0 ∗ f)(gN) =

∫

G

f0(γ)f(γ
−1gN) dγ.

The G-invariant measure on G/N is not invariant for the natural right
action of the Levi factor L. Instead there is a character δ : L→ R

×
+ such that

∫

G/N

f(xℓ) dx = δ(ℓ)−1

∫

G/N

f(x) dx

14



for all f ∈ C∞
c (G/N) and all ℓ ∈ L. In fact

(4.2) δ(ℓ) = |det (Adℓ : n→ n)| .

But if we adjust the right action of L on the function space C∞
c (G/N) by

means of the formula

(f · ℓ)(x) = δ(ℓ)−
1

2f(xℓ−1),

then we obtain a unitary action for the natural L2-inner product. There is
an associated convolution action

C∞
c (G/N)⊗ C∞

c (L) −→ C∞
c (G/N)

defined by

(f ∗ f1)(x) =

∫

L

δ(ℓ)−
1

2f(xℓ−1)f1(ℓ) dℓ

=

∫

L

δ(ℓ)
1

2f(xℓ)f1(ℓ
−1) dℓ,

where the integrals are equal because L is unimodular. Finally, a C∞
c (L)-

valued inner product is defined on C∞
c (G/N) by

〈h, f〉 : ℓ 7→ δ(ℓ)
1

2

∫

G/N

h(x)f(xℓ) dx,

or equivalently

〈h, f〉 : ℓ 7→ δ(ℓ)−
1

2

∫

G/N

h(xℓ−1)f(x) dx

(the integrands are compactly supported functions because the right action
of L on the homogeneous space G/N is proper, which in turn follows from
the fact that LN is a closed subgroup of G). All these structures extend by
completion to give the Hilbert module C∗

r (G/N). See [Cla13, Proposition 1].

4.1 Remark. In [Cla13], the Hilbert module C∗
r (G/N) is shown to admit a

left action of the full group C∗-algebra C∗(G). To see that the left action
factors through C∗

r (G), let f0 ∈ C
∞
c (G) and let

T : C∗
r (G/N) −→ C∗

r (G/N)
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be the convolution operator determined by the formula (4.1). We need to
prove that the operator norm of T is bounded by the reduced C∗-algebra
norm of f0.

Let ψ be a faithful state of C∗
r (L). The formula

〈f1, f2〉ψ = ψ
(
〈f1, f2〉C∗

r (G/N)

)

defines a scalar inner product on C∗
r (G/N). Denote by C∗

r (G/N)ψ the as-
sociated Hilbert space completion. Each bounded, adjointable operator on
C∗
r (G/N) extends to a bounded operator on C∗

r (G/N)ψ, and the localization
map

B(C∗
r (G/N)) −→ B(C∗

r (G/N)ψ)

defined in this manner is an injective, and hence isometric, homomorphism
of C∗-algebras; see [Lan95, page 55].

Returning to the matter at hand, it follows that the norms of T as an
operator on C∗

r (G/N) and on C∗
r (G/N)ψ are equal. But the representation

of C∗(G) on C∗
r (G/N)ψ is easily checked to be weakly contained in L2(G/N),

and the representation of C∗(G) on this Hilbert space factors through C∗
r (G)

because N is amenable.

The significance of the correspondence C∗
r (G/N) is that it implements

the functor of parabolic induction:

4.2 Proposition. (See [Cla13, Corollary 1].) Let τ be a tempered unitary
representation of L on a Hilbert space H. The parabolically induced represen-
tation IndGP τ is unitarily equivalent to the representation of G on the Hilbert
space C∗

r (G/N)⊗C∗

r (L) H.

4.3 Remark. We might call the correspondence C∗
r (G/N) the C∗-algebraic

universal principal series, following similar terminology that is used in the
p-adic context; see [BK11].

4.4 Definition. Let H be a correspondence from C∗
r (L) to a C∗-algebra C.

We define the parabolically induced Hilbert module IndGP H to be the Hilbert
module

IndGP H = C∗
r (G/N)⊗C∗

r (L) H.

It is a correspondence from C∗
r (G) to C.

4.5 Proposition. The C∗-algebra C∗
r (G) acts by compact operators on the

Hilbert module C∗
r (G/N).

16



Proof. Let f0 ∈ C
∞
c (G) and let f ∈ C∞

c (G/N). Then

(f0 ∗ f)(x) =

∫

G

f0(γ)f(γ
−1x) dγ

=

∫

G/N

k(x, y)f(y) dy,

where

k(g1N, g2N) =

∫

N

f0(g1ng
−1
2 ) dn.

The kernel function

(4.3) k : G/N ×G/N −→ C

defined from f0 by the above integral is δ-homogeneous under the right action
of L in the sense that

(4.4) k(xℓ, yℓ) = δ(ℓ)−1k(x, y).

Here δ is the character (4.2). So the support of k is an L-invariant closed set
in G/N ×G/N for the diagonal right action of L.

We claim that the image of the support of the kernel function k in the
quotient space (G/N ×G/N) /L is a compact set. To see this, consider the
mapping from G/P × supp(f0) to (G/N ×G/N) /L given by

(4.5) (h1P, h2) 7→ (h1N, h
−1
2 h1N)L.

If (g1N, g2N) lies in the support of k then there is some n ∈ N for which
g1ng

−1
2 lies in the support of f0, and then the image of (g1N, g2N) in the

quotient (G/N ×G/N) /L is equal to the image of the point (g1P, g1ng
−1
2 )

under (4.5). Thus the image of the support of k in (G/N ×G/N) /L is
contained in the image of (4.5). But G = KP [Kna02, Proposition 7.83], so
G/P is compact and (4.5) has compact image.

Now, any smooth kernel function as in (4.3) with the homogeneity prop-
erty (4.4) whose support is compact in (G/N ×G/N) /L defines a bounded,
adjointable operator on C∗

r (G/N). We shall show that these operators are
all compact.

Each such kernel function k may be written in the form

k(x, y) =

∫

L

u(xℓ, yℓ)δ(ℓ) dℓ

17



for some u ∈ C∞
c (G/N × G/N). The function u may be approximated in

the uniform norm by linear combinations of elementary functions (x, y) 7→
h1(x)h2(y), with all the elementary functions uniformly compactly supported.
It suffices to show that a kernel function

k(x1, x2) =

∫

L

h1(x1ℓ)h2(x2ℓ)δ(ℓ) dℓ

associated to a single elementary function gives rise to a compact operator.
The operator in this case maps f ∈ C∞

c (G/N) to the function

x 7→

∫

G/N

∫

L

h1(xℓ)h2(yℓ)δ(ℓ)f(y) dydℓ,

which may be re-written as

x 7→

∫

L

δ(ℓ)
1

2h1(xℓ)

∫

G/N

h2(yℓ)δ(ℓ)
1

2 f(y) dydℓ.

This is precisely how the rank one operator

h1 ⊗ h
∗
2 : f 7→ h1〈h2, f〉,

acts.

4.6 Corollary. If C∗
r (L) acts through compact operators on a Hilbert module

H, then C∗
r (G) acts through compact operators on the parabolically induced

Hilbert module IndGP H.

Proof. This is a consequence of Proposition 4.5 and Lemma 2.12.

The corollary applies to any irreducible unitary Hilbert space represen-
tation of G as a result of a fundamental theorem of Harish-Chandra (see
[HC53, Theorem 6, p.230]):

4.7 Theorem. The C∗-algebra of a real reductive group acts by compact
operators in any irreducible unitary representation of G.

4.8 Remark. For proofs of this theorem more congenial to operator algebra
theory, see [God52, Theorem 2] or [Sti58]. See also [Dix57].
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Let us now examine the tempered representations of L in more detail.
The group L factors canonically as a Cartesian product of two closed and
commuting Lie subgroups. We’ll follow tradition and express this in terms
of the Langlands decomposition

P = (MP × AP )⋉NP =MPAPNP ,

where:

(a) NP = N .

(b) MPAP = L.

(c) AP is the group of positive-definite matrices in the center of L.

(d) MP may be characterized as the subgroup of L generated by the compact
subgroups of L. We shall call it the compactly generated part of L.

See for example [Kna02, Chap. VII §7]. We find that every tempered ir-
reducible representation of L is a product σ ⊗ ϕ of a tempered irreducible
representation σ of MP with a unitary character ϕ of AP . We are especially
interested in the special case where

σ : MP −→ U(Hσ)

is an irreducible square-integrable unitary Hilbert space representation ofMP .
It is not actually necessary to specialize to square integrable representations
for the results of this section, but we shall do so anyway, to fix ideas and
notation for the next two sections. The representations obtained from such
σ by extending σ ⊗ ϕ to P trivially across N then inducing to G:

IndGP (σ ⊗ ϕ)

are the (unitary) principal series representations of G.

4.9 Definition. Denote by

Hσ = C0(Â, Hσ)

the Hilbert C0(Â)-module of continuous functions, vanishing at infinity, from

the Pontrjagin dual Â into the Hilbert space Hσ. The C0(Â)-module action

is by pointwise multiplication, and the C0(Â)-valued inner product is the

pointwise inner product of Hilbert space-valued functions on Â.
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The C∗-algebra C∗
r (L) acts on Hσ through the family of representations

σ ⊗ ϕ of L = MA on the Hilbert space Hσ. Thus if f ∈ C∗
r (L) and h ∈

C0(Â, Hσ), then
(f · h)(ϕ) = (σ ⊗ ϕ)(f)h(ϕ)

for all ϕ ∈ Â.

4.10 Lemma. The C∗-algebra C∗
r (L) acts by compact operators on the Hilbert

module Hσ.

Proof. The reduced C∗-algebra of L =MA has the form

C∗
r (L)

∼= C∗
r (M)⊗ C∗

r (A)
∼= C∗

r (M)⊗ C0(Â),

where the first isomorphism uses the product structure of L and the sec-
ond uses the Fourier transform for the abelian group A. The first factor in
C∗
r (M) ⊗ C0(Â) acts on C0(Â, Hσ) through compact operators on Hσ, and

the second factor acts through pointwise multiplications. So the reduced
C∗-algebra of L acts through the C∗-algebra C0(Â,K(Hσ)). This is the C∗-

algebra of compact operators on Hσ = C0(Â, Hσ).

4.11 Remark. In fact the action map is a surjective homomorphism from
C∗
r (L) onto K(Hσ).

4.12 Corollary. The C∗-algebra C∗
r (G) acts as compact operators on the

Hilbert module IndGP Hσ.

5 Decomposition of the Reduced C*-Algebra

In this section we shall use the analysis of the tempered dual, carried out
mostly by Harish-Chandra and Langlands, to decompose the reduced group
C∗-algebra into a direct sum of component C∗-algebras. The decomposition is
well known, but not especially well documented. In any case, the arguments
are quite simple and fit well into the Hilbert module context.

5.1 Definition. Let P be a parabolic subgroup of G, and let σ be an irre-
ducible, square-integrable representation of the compactly generated part of
the Levi factor of P . Denote by

C∗
r (G)P,σ ⊆ K(IndGP Hσ)

the image of the C∗-algebra C∗
r (G) under its action as compact operators on

the Hilbert module IndGP Hσ. See Corollary 4.12.
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Our aim is to show that the natural quotient homomorphisms from C∗
r (G)

to the component algebras C∗
r (G)P,σ determine an isomorphism of C∗-algebras

C∗
r (G)

∼=
−→

⊕

[P,σ]

C∗
r (G)P,σ,

where the sum is over representatives of suitable equivalence classes of para-
bolic subgroups P and irreducible square-integrable representations σ.

First, we shall describe the equivalence relation used above on pairs (P, σ).

5.2 Definition. Two pairs (P1, σ1) and (P2, σ2), each consisting of a (stan-
dard) parabolic subgroup and an irreducible, square-integrable representa-
tion of the compactly generated part of the Levi factor of the parabolic,
are associate if there is an element of G that conjugates the Levi factor of
P1 to the Levi factor of P2, and conjugates σ1 to a representation unitarily
equivalent to σ2.

The relevance of this concept of equivalence stems from the following
result, which is the first of several substantial theorems in representation
theory that we shall merely quote.

5.3 Theorem. (See [HC72, Section 11].) If (P1, σ1) and (P2, σ2) are asso-
ciate, then every parabolically induced representation IndGP1

(σ1 ⊗ ϕ1) is uni-

tarily equivalent to some parabolically induced representation IndGP2
(σ2⊗ϕ2).

5.4 Remark. In fact it is also true that the representations of G on the
Hilbert modules IndGP1

Hσ2 and IndGP2
Hσ2 are unitarily equivalent, as we shall

note in the next section, but this is a more difficult result. Theorem 5.3 is
proved by computing that the characters of IndGP1

(σ1⊗ϕ1) and IndGP2
(σ2⊗ϕ2)

are equal, but this technique does not apply in the Hilbert module case.

Next, we shall need the following theorem of Harish-Chandra [HC66,
Section 36] (see also [Wal88, Section 7.7] for an exposition) that is the coun-
terpart, for tempered representations of real reductive groups, of Bernstein’s
uniform admissibility theorem [Ber92, Section 1.4]. Hence the title we shall
give it here.

5.5 Theorem. (Uniform admissibility.) Let G be a reductive group with max-
imal compact subgroup K. Let τ be an irreducible representation of K. There
are at most finitely many equivalence classes of irreducible, square-integrable
representations of the compactly generated part of G whose restrictions to K
contain τ as a subrepresentation.
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5.6 Corollary. Let L = MA be a Levi subgroup of G and form the direct
sum Hilbert space representation ⊕[σ]Hσ of M , indexed by a set of represen-
tatives of the unitary equivalence classes of the irreducible, square-integrable
representations of M . The action of C∗

r (M) on ⊕[σ]Hσ is through compact
operators.

Proof. As p ranges over the isotypical projections associated to irreducible
representations of K∩M (a maximal compact subgroup of M) the subspaces
C∗
r (M)p span a dense subspace of C∗

r (M). But according to Theorem 5.5 the
elements of C∗

r (M)p act as the zero operator in all but finitely many of the
Hilbert spaces Hσ. The result follows from this and from Theorem 4.7.

5.7 Corollary. Form the direct sum Hilbert C0(Â)-module

⊕

[P,σ]

IndGP Hσ

indexed by a set of representatives of the associate classes of pairs (P, σ).
The action of C∗

r (G) on this Hilbert module is through compact operators.

Proof. First, fix a standard Levi subgroup, and consider only those parabolics
P with that Levi factor. As in the proof of Lemma 4.10, it follows from
Corollary 5.6 that the action of C∗

r (L) on the orthogonal direct sum Hilbert
module ⊕

[σ]

Hσ =
⊕

[σ]

C0(Â, Hσ)

is through compact operators. It follows from Proposition 4.5 and Lemma 2.12
that C∗

r (G) acts on ⊕[P,σ] Ind
G
P Hσ through compact operators. The full re-

sult follows from the fact that there are only finitely many standard Levi
subgroups.

We obtain from the corollary a homomorphism of C∗-algebras

C∗
r (G) −→

⊕

[P,σ]

K(IndGP Hσ),

and so by definition a homomorphism

(5.1) C∗
r (G) −→

⊕

[P,σ]

C∗
r (G)P,σ.
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5.8 Remark. Of course the important point about (5.1) is that the image
lies within the C∗-algebraic direct sum, consisting of families of elements
aσ ∈ C

∗
r (G)P,σ with limσ→∞ ‖aσ‖ = 0. See for instance [Lan95, p.6].

Our next task is to compute the image of the homomorphism (5.1). For
this we shall need the following important theorem of Langlands on the
disjointness of principal series representations. References for this result are
[Lan89, p. 142ff.] and [HC72]. See also [Kna86, Theorem 14.90].

5.9 Theorem. (Disjointness) If two principal series representations

IndGP1
(σ1 ⊗ ϕ1) and IndGP2

(σ2 ⊗ ϕ2)

share an irreducible constituent, then there is an element of G that conjugates
the Levi factor of P1 to the Levi factor of P2, and conjugates σ1 ⊗ ϕ1 to a
representation of P2 that is unitarily equivalent to σ2 ⊗ ϕ2.

We shall also need to apply some elementary facts from C∗-algebra rep-
resentation theory to (5.1).

5.10 Lemma. The irreducible representations of the C∗-algebra C∗(G)P,σ,
viewed as irreducible representations of G through the quotient mapping

C∗
r (G) −→ C∗

r (G)P,σ,

are precisely the irreducible constituents of the principal series representations
IndGP (σ ⊗ ϕ), as ϕ ranges over Â.

Proof. If C is any C∗-subalgebra of a C∗-algebra B, then every irreducible
representation of C is equivalent to the restriction of an irreducible represen-
tation of B to a C-invariant, C-irreducible subspace (see [Dix77, Proposition
2.10.2]). In the present case, where C = C∗

r (G)P,σ and B = K(IndGP Hσ), the
irreducible representations of B are the natural representations given by eval-
uation at ϕ ∈ Â on the Hilbert spaces IndGP Hσ⊗ϕ. Indeed, IndGP Hσ gives a

Morita equivalence between B and the commutative C∗-algebra C0(Â), so the
irreducible representations of B are exactly those induced from irreducible
representations of C0(Â), which are in turn given by evaluation maps. To
conclude, observe that IndGP Hσ ⊗C0(Â) Cϕ ≃ IndGP Hσ⊗ϕ as Hilbert spaces, so
that once restricted to C, this is precisely the principal series representation
IndGP (σ ⊗ ϕ).
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5.11 Definition. Let ϕ : A → B be a surjective homomorphism of C∗-
algebras. The support of ϕ is the subset of the dual Â consisting of all
irreducible representations that factor through ϕ (that is, they vanish on the
kernel of ϕ).

5.12 Lemma. If ϕ1 : A → B1 and ϕ2 : A → B2 are surjective homomor-
phisms of C∗-algebras, and if the support of ϕ1 is disjoint from the support
of ϕ2, then the homomorphism

ϕ1 ⊕ ϕ2 : A −→ B1 ⊕ B2

is surjective.

Proof. To say that the supports are disjoint is to say that no irreducible
representation can vanish on the kernels of both ϕ1 and ϕ2. But this can only
happen when the algebraic sum of the kernels, which is in any case a closed,
two-sided ideal in A, is equal to A (otherwise the quotient C∗-algebra A/(J1+
J2) would have a non-zero irreducible representation). But elementary linear
algebra shows that if J1 + J2 = A, then the natural projection map

ϕ1 ⊕ ϕ2 : A −→ A/J1 ⊕ A/J2

is surjective.

5.13 Corollary. If ϕk : A → Bk for k = 1, . . . , n are surjective homomor-
phisms of C∗-algebras, and if the supports of the ϕk are pairwise disjoint,
then the homomorphism

⊕

k

ϕk : A −→
⊕

k

Bk

is surjective.

5.14 Lemma. Let {ϕα : A→ Bα} be a family of surjective homomorphisms
of C∗-algebras. Assume that

(a) the supports of the homomorphisms ϕα are pairwise disjoint, and

(b) the direct sum ⊕αϕα maps A into ⊕αBα. That is,

lim
α→∞

‖ϕα(a)‖ = 0

for every a ∈ A.
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Then the homomorphism

⊕

α

ϕα : A −→
⊕

α

Bα

that results from (b) is surjective.

Proof. Fix any index α0 and organize the direct sum C∗-algebra as

⊕

α

Bα = Bα0
⊕

⊕

α6=α0

Bα.

To prove the lemma it suffices to show that the image of the homomorphism
⊕ϕα contains all elements in the direct sum that are zero in the second term.
Let J be the kernel of ϕα0

. The image of J in ⊕α6=α0
Bα is a closed C∗-

subalgebra, as indeed is the image of any C∗-algebra homomorphism. But it
follows from Corollary 5.13 and the assumption (b) in the lemma that the
image is also a two-sided ideal. This image ideal must be all of ⊕α6=α0

Bα, for
if it wasn’t, the quotient C∗-algebra would have an irreducible representation
π. Its equivalence class, viewed as a point in Â, would lie in the support of
ϕα0

, and also in the support of ϕα for some α 6= α0, contradicting disjointness
of supports.

Combining the Langlands Disjointness Theorem with these elementary
observations we arrive at the following result:

5.15 Proposition. Form the C∗-algebra direct sum

⊕

[P,σ]

C∗
r (G)P,σ

indexed by a set of representatives of the associate classes of pairs (P, σ). The
quotient mappings from C∗

r (G) into each summand determine a C∗-algebra
homomorphism

C∗
r (G) −→

⊕

[P,σ]

C∗
r (G)P,σ,

and moreover this homomorphism is surjective.

Proof. It follows from Theorem 5.9 that condition (a) in Lemma 5.14 is
satisfied. As for (b), it holds by Remark 5.8.
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We need one final result from representation theory in this section:

5.16 Theorem. (See [Lan89, Lemma 4.10] or [Tro77].) Every tempered
irreducible representation of G may be realized as a subrepresentation of a
principal series representation.

5.17 Proposition. Let G be a real reductive group. The C∗-algebra homo-
morphism

C∗
r (G) −→

⊕

[P,σ]

C∗
r (G)P,σ

is an isomorphism.

Proof. If the kernel was non-zero, then there would be an irreducible repre-
sentation of C∗

r (G) which did not vanish on it, and which therefore was dis-
tinct from any parabolically induced representation, or any subrepresentation
of a parabolically induced representation, contrary to Theorem 5.16.

5.18 Remark. It obviously follows from all of the above that the C∗-algebra
C∗(G)P,σ depends only on the associate class of the pair (P, σ), up to iso-
morphism. This will be made more explicit in the next section.

6 Structure of the Component C*-Algebras

In this section we shall determine the structure of the individual component
C∗-algebras C∗

r (G)P,σ in Definition 5.1 (or at any rate, enough of the structure
of these algebras for our purposes). Once again, to do so we shall rely on
some substantial results in representation theory, namely Theorems 6.1 and
6.6 below.

Let P1 and P2 be standard parabolic subgroups of G with Levi factors
Li =MPi

APi
, and suppose given irreducible square-integrable unitary repre-

sentations σi of MPi
for i ∈ {1, 2}.

6.1 Theorem. If w ∈ K conjugates L1 into L2, and if Ad∗
w σ1 ≃ σ2, then

there is an Ad∗
w-twisted unitary isomorphism of Hilbert modules

Uw : IndGP1
Hσ1 −→ IndGP2

Hσ2

that covers the isomorphism

Ad∗
w : C0(ÂP1

) −→ C0(ÂP2
)
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in the sense of Definition 2.3 and that commutes with the action of C∗
r (G).

It is unique up to a composition with an inner automorphism.

Proof. Each Hilbert module IndGPi
Hσi can be seen as a continuous field of

Hilbert spaces over ÂPi
. The existence of the operators Uw then follows from

that of the so-called Knapp-Stein normalized intertwiners, constructed in
[KS80] and providing unitary equivalences between principal series represen-
tations IndGP1

σ1⊗ϕ and IndGP2
σ2⊗Ad

∗
w ϕ (see for instance [KS80, Proposition

8.5.(v)]).
As for the uniqueness assertion, let P be P1 or P2. There is a dense open

set of characters ϕ ∈ ÂP for which the unitary Hilbert space representation
IndGP Hσ⊗ϕ is irreducible. This is due to Bruhat [Bru56] if P is minimal and
to Harish-Chandra [HC76] in general. See also [MP82]. In any case it follows
from the more advanced Theorem 6.6 below. Given two Ad∗

w-twisted unitary
automorphisms, the composition of one with the inverse of the other is a
unitary Hilbert module automorphism IndGP Hσ that intertwines the action
of C∗

r (G). Again viewing the Hilbert module as a continuous field of Hilbert

spaces over ÂP , our unitary automorphism is then a continuous family of
unitary self-intertwiners of the representations IndGP Hσ⊗ϕ.

6.2 Remark. Another approach to Knapp-Stein theory in the context of
Hilbert modules consists in constructing w-twisted unitary operators directly
at the level of C∗

r (G/N). That point of view was adopted in [Cla15] and
[Cla14] where explicit unitary intertwiners were obtained in the case of the
special linear group.

Consider now a single parabolic subgroup P ⊆ G and associated Levi
subgroup L, and form the group

(6.1) W = NK(L)/K ∩ L = NG(L)/L.

It is a finite group; see [Kna86, Chap. V]. Next, fix an irreducible square-
integrable unitary representation σ of the compactly generated part M of L.
The group W acts as outer automorphisms of M , and hence it acts on the
set of equivalence classes of representations of M . We define Wσ to be the
isotropy group of the equivalence class of σ:

Wσ = {w ∈ NK(L) : Ad
∗
w σ ≃ σ }/K ∩ L.

The group W , and hence in particular the subgroup Wσ acts as a group of
automorphisms of the vector group A ⊆ L.
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According to Theorem 6.1 there is a group extension

1 −→ Inner(IndGP Hσ) −→ W̃σ −→ Wσ −→ 1.

where

(a) Inner(IndGP Hσ) is the group of inner unitary automorphims of IndGP Hσ.

It is isomorphic to the unitary group of the multiplier algebra of C0(Â),

or in other words the group of modulus-one continuous functions on Â.

(b) W̃σ is the group of all twisted unitary automorphisms of IndGP Hσ asso-
ciated with elements of the normalizer group NK(L) that fix σ up to
equivalence, as in Theorem 6.1.

In particular, the self-intertwiners associated to the elements of Wσ by Theo-
rem 6.1 yield a projective unitary action in the sense of Definition 2.7 of Wσ

on IndGP Hσ, hence an action homomorphism of the form

(6.2) C∗
r (G) −→ K(Hσ)

Wσ .

We are going to show that this map is surjective.

6.3 Definition. Given ϕ ∈ Â, let

Wσ,ϕ = {w ∈ Wσ : Ad∗
w(ϕ) = ϕ }.

For each w ∈ Wσ,ϕ the twisted unitary automorphism Uw of IndGP Hσ

appearing in Theorem 6.1 restricts to an actual unitary automorphism Uw,ϕ
of the fiber IndGP (σ ⊗ ϕ).

6.4 Definition. We denote by I(σ, ϕ) the finite-dimensional C∗-algebra of
operators on the Hilbert space of the principal series representation IndGP (σ⊗
ϕ) generated by the Knapp-Stein intertwiners Uw,ϕ associated with the ele-
ments of the finite group Wσ,ϕ.

We start by making note of the representation theory of the fixed point
algebra (compare the discussion in [Dix77, 5.4.13]).

6.5 Lemma. Let ϕ ∈ Â and p ∈ I(σ, ϕ) be a minimal projection.

(a) The C∗-algebra K(IndGP Hσ)
Wσ is represented irreducibly on the range of

p.
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(b) Every irreducible representation of K(IndGP Hσ)
Wσ arises this way, up to

unitary equivalence.

(c) The representations associated to two minimal projections

p1 ∈ I(σ, ϕ1) and p2 ∈ I(σ, ϕ2)

are equivalent if and only if there is some element w ∈ Wσ such that
Ad∗

w(ϕ1) = ϕ2 and such that the projection Ad∗
w(p1) ∈ I(σ, ϕ2) is equiv-

alent to p2.

The following result is known as Harish-Chandra’s Completeness Theo-
rem.

6.6 Theorem. [HC76, Theorem 38.1] Let σ be an irreducible square-integrable
unitary representation representation of M , and let ϕ be a unitary character
of A. The finite-dimensional C∗-algebra I(σ, ϕ) is the full commutant of the
parabolically induced representation IndGP (σ ⊗ ϕ).

Proof. See [KS80, Corollary 9.8] and [Kna86, Theorem 14.31].

6.7 Proposition. The action homomorphism

C∗
r (G) −→ K(IndGP Hσ)

Wσ

is surjective, and therefore C∗
r (G)P,σ = K(IndGP Hσ)

Wσ .

Proof. It is evident from Lemma 6.5 that the C∗-algebra

B = K(IndGP Hσ)
Wσ

is postliminal, meaning that the image of B in any irreducible representation
is the C∗-algebra of compact operators on the representation Hilbert space.
We may therefore invoke Dixmier’s version of the Stone-Weierstrass Theorem
[Dix77, Theorem 11.1.8] to prove surjectivity. According to Dixmier’s theo-
rem, it suffices to prove that the irreducible representations of B pull back
to irreducible representations of C∗

r (G), and that inequivalent irreducible
representations of B pull back to inequivalent irreducible representations of
C∗
r (G).

It follows from Harish-Chandra’s Completeness Theorem that every irre-
ducible representation of B does indeed pull back to an irreducible represen-
tation of C∗

r (G), and that for a given unitary character ϕ of A, the irreducible
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representations of B associated to inequivalent minimal projections in I(σ, ϕ)
remain inequivalent when pulled back to C∗

r (G). Part (b) of Lemma 6.5 en-
sures that irreducible representations of B associated to unitary characters of
A in distinct Wσ orbits remain inequivalent when pulled back to C∗

r (G).

The isomorphism of Proposition 5.17 can now be rephrased as follows:

6.8 Theorem. Let G be a real reductive group. The combined action homo-
morphism

(6.3) C∗
r (G) −→

⊕

[P,σ]

K(IndGP Hσ)
Wσ

is an isomorphism of C∗-algebras.

6.9 Remark. A refined version of this decomposition appears in Wasser-
mann’s short note [Was87]. It incorporates additional information, due to
Knapp and Stein, about the structure of the stabilizers Wσ (see [KS72],
[KS80], and [Kna86, XIV §9]), who showed that the group Wσ,ϕ admits a
semidirect product decomposition

Wσ,ϕ = W ′
σ,ϕ ⋊ Rσ,ϕ,

in which the factor Rσ,ϕ, called the R-group attached to (σ, ϕ), consists of
those elements that actually contribute nontrivially to the intertwining al-
gebra of IndGP (σ ⊗ ϕ). The full group Wσ can also be written as semidirect
product

Wσ =W ′
σ ⋊ Rσ,

and Wassermann notes that

K(IndGP Hσ)
Wσ ∼

Morita
C0(ÂP/W

′
σ)⋊ Rσ.

This is needed in the computation of the K-theory of C∗
r (G), which was

Wassermann’s main concern. See [BCH94, §4] for an account of the K-
theoretic aspects of C∗

r (G) (the Connes-Kasparov and Baum-Connes conjec-
tures). The theory of the R-group will not be required for our purposes. The
decomposition of Theorem 6.8 will be enough.
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6.10 Example. The structure of the reduced C∗-algebra of real-rank one
groups was elucidated in [BM76]. Let us consider the basic case of G =
SL(2,R) (see [BM76, §4] and [BCH94, p.256]).

Up to association there are two parabolic subgroups—the group G itself
and the group P of upper triangular matrices. The group M in the de-
composition P = MAN consists of ±I, while A is isomorphic to R+. The
Weyl group consists of only two elements, both of which fix each of the two
representations σ0 and σ1 of M (the first being the trivial representation).

According to Theorem 6.8 the reduced C∗-algebra decomposes as

C∗
r (G)

∼=
⊕

[π]

K(Hπ)⊕ C0

(
R,K(Hσ0)

)Z2 ⊕ C0

(
R,K(Hσ1)

)Z2 ,

where the first direct sum is indexed by the discrete series of G.

6.11 Remark. A more refined analysis, as in Remark 6.9, shows that

C0

(
R,K(Hσ0)

)Z2

∼
Morita

C0(R/Z2)

and
C0

(
R,K(Hσ1)

)Z2

∼
Morita

C0(R)⋊ Z2.

7 Structure of the Universal Principal Series

In this section we shall work with a fixed standard parabolic subgroup

(7.1) P = LN

of a real reductive group G. We shall determine the structure of the corre-
spondence C∗

r (G/N) using the information about reduced group C∗-algebras
that we presented in Sections 5 and 6.

Applying the results in those sections to the real reductive group L rather
than G, we find that the action of L on its principal series representations
determines an isomorphism

(7.2) C∗
r (L)

∼=
−→

⊕

[Q,σ]

K
(
IndLQHσ

)Wσ
.

To review, the sum is over associate classes of pairs (Q, σ) consisting of a
standard parabolic subgroup Q ⊆ L and an irreducible, square-integrable
representation of the compactly generated part of the Levi factor of Q.
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As we indicated in (2.13), the above direct sum decomposition of C∗
r (L)

gives rise to a direct sum decomposition of any Hilbert C∗
r (L)-module, and

our first task is to understand these summands in the case of C∗
r (G/N).

According to (2.14), if E is any Hilbert C∗
r (L)-module, then the summands

have the form

(7.3) K
(
IndLQHσ, E ⊗C∗

r (L) Ind
L
QHσ

)Wσ
,

so we shall need to compute the tensor product C∗
r (G/N)⊗C∗

r (L) Ind
L
QHσ.

To this end, we shall first make explicit what we mean by standard in the
context of the group L. If A is the given maximal abelian positive-definite
subgroup of G, then A ∩ L is a maximal abelian positive-definite subgroup
of L. Similarly if a+ is a chamber defining a family of standard parabolic
subgroups for G, then a+ ∩ l is contained in a chamber defining a family of
standard parabolic subgroups for L. We shall make compatible choices in
this way. Having made these choices, it follows from [Vog81, Lemma 4.1.17]
that:

7.1 Lemma. If P = LNP , as in (7.1), and if Q is any standard parabolic
subgroup of L, then the product QNP is a standard parabolic subgroup of G.
Moreover, if we denote by NQ the unipotent radical of the standard parabolic
subgroup Q ⊆ L, then the unipotent radical of QNP is NQNP .

Define a convolution product

(7.4) C∞
c (G/NP )⊗ C

∞
c (L/NQ) −→ C∞

c (G/NPNQ)

by

(f1 ∗ f2)(x) =

∫

L

δ(ℓ)−
1

2 f1(xℓ
−1NP )f2(ℓNQ) dℓ

=

∫

L

δ(ℓ)
1

2 f1(xℓNP )f2(ℓ
−1NQ) dℓ,

where δ = δGP is the character (4.2) involved in the definition of C∗
r (G/NP ).

This product factors through the tensor product over C∞
c (L) and has dense

range. Moreover, denoting the Levi component of Q by J so that Q = JNQ

and QNP = JNQNP , it is compatible with the C∞
c (J)-valued inner products,

as follows:
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7.2 Lemma. (Induction in Stages.) The convolution product (7.4) deter-
mines a unitary isomorphism of Hilbert C∗

r (J)-modules

C∗
r (G/NP )⊗C∗

r (L) C
∗
r (L/NQ)

∼=
−→ C∗

r (G/NPNQ).

that is compatible with the left actions of C∗
r (G) on both sides.

7.3 Remark. Induction in stages for representations of C∗-algebras was
described in the original work of Rieffel [Rie74, Theorems 5.9 and 5.11]. The
lemma above reflects relations amongst successively induced principal series
representations that can be found in [Vog81, Proposition 4.1.18].

From this it is easy to compute the Hilbert module tensor product that
appears in (7.3).

7.4 Corollary. Let Q be a standard parabolic subgroup of L with Levi fac-
tor J , and let σ be an irreducible, square-integrable representation of the
compactly generated part of J . There is a unitary isomorphism of Hilbert
C∗
r (J)-modules

C∗
r (G/N)⊗C∗

r (L) Ind
L
QHσ

∼=
−→ IndGQN Hσ.

compatible with the left actions of C∗
r (G).

Proof. This is an immediate consequence of the above lemma and the fact
that IndLQHσ = C∗

r (L/NQ)⊗C∗

r (J) Hσ.

Applying the results of Section 2 we obtain the following description of
the C∗-algebraic universal principal series.

7.5 Theorem. There is a unitary isomorphism of Hilbert modules

C∗
r (G/N)

∼=
−→

⊕

[Q,σ]

K
(
IndLQHσ, Ind

G
QN Hσ

)Wσ

with the following properties:

(a) The left action of C∗
r (G) on C∗

r (G/N) corresponds under the isomor-
phism to the left action of C∗

r (G) on each principal series Hilbert module
IndGQN Hσ.
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(b) The right action of C∗
r (L) on C∗

r (G/N) corresponds under the isomor-
phism to the left action of C∗

r (L) on each principal series Hilbert module
IndLQHσ.

(c) The summands on the right hand side are orthogonal to one another, and
the Hilbert module inner product on any one of them is

〈S, T 〉 = S∗T,

where the operator S∗T ∈ K(IndLQHσ)
Wσ is to be viewed as an element

of C∗
r (L) via the isomorphism (7.2).

7.6 Example. In the case of a minimal parabolic subgroup P = LN =
MAN , one has

C∗
r (L)

∼=
⊕

[σ]∈M̂

C0

(
Â,K(Hσ)

)
.

Note that there are no proper parabolic subgroups of L, andM is compact, so
that each Hσ is in fact finite-dimensional. The decomposition of Theorem 7.5
reduces to

C∗
r (G/N) ∼=

⊕

σ∈M̂

K(Hσ, Ind
G
P Hσ) ∼=

⊕

σ∈M̂

C0

(
Â,K(Hσ, Ind

G
P Hσ)

)
.

Note that the groups Wσ(L) are trivial in this case.

7.7 Remark. Results analogous to Theorem 7.5 at the Hilbert space level
are presented in the final chapter of [Wal92] in connection with Whittaker
functions. See in particular 15.9.3 for the Plancherel decomposition of the
quasiregular representation of G on L2(G/N).

8 The Adjoint Hilbert Module

8.1 Definition. Let A and B be C∗-algebras, and let E be a Hilbert corre-
spondence from A to B. We shall denote by E∗ the complex conjugate vector
space to E , equipped with the following (algebraic) B-A-bimodule structure:

b · e · a = a∗eb∗.

This is the adjoint bimodule to E .
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The adjoint bimodule E∗ will not typically carry the structure of a cor-
respondence from B to A, but in this section we shall show that when
E = C∗

r (G/N), the adjoint bimodule C∗
r (G/N)∗ can be equipped with a

C∗
r (G)-valued inner product that makes it a correspondence from C∗

r (L) to
C∗
r (G). In the next section we shall characterize this secondary inner product

using the Plancherel theorem.
The significance of this fact is that interior tensor product with C∗

r (G/N)∗,
as in Definition 2.11, gives a functor of parabolic restriction from tempered
representations of G to tempered representations of L. In this paper we shall
merely introduce the parabolic restriction functor. In a subsequent paper
[CCH14] we shall show that the new functor is simultaneously left and right
adjoint to the functor of parabolic induction between categories of unitary
tempered Hilbert space representations.

The construction of the C∗
r (G)-valued inner product on C∗

r (G/N)∗ is in
fact very straightforward, given the structure theory developed in the last
several sections.

Recall that according to Theorem 6.8 there is an isomorphism

(8.1) C∗
r (G)

∼=
−→

⊕

[P,σ]

K(IndGP Hσ)
Wσ ,

while according to Theorem 7.5 there is an isomorphism

(8.2) C∗
r (G/N)

∼=
−→

⊕

[Q,σ]

K
(
IndLQHσ, Ind

G
QN Hσ

)Wσ
.

The first thing to say about the C∗
r (G)-valued inner product is that, by

definition, the summands in (8.2), or rather the adjoint modules associated
to them, will be orthogonal to one another.

As for the individual summands in (8.2), the inner product of a pair of
elements from the [Q, σ]-summand will lie in the [QN, σ]-summand of (8.1);
see Lemma 7.1. In order to define this inner product it will be helpful to
refine a little the notation for groups of intertwining operators Wσ that we
have used up to now. Let J be a standard Levi subgroup of L, where L is
in turn a standard Levi subgroup of G, and let σ be an irreducible, square-
integrable representation of the compactly generated part of J . We shall now
use the notations

Wσ(G) = {w ∈ NK(J) : Ad
∗
w σ ≃ σ }/K ∩ J
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and
Wσ(L) = {w ∈ NK∩L(J) : Ad

∗
w σ ≃ σ }/K ∩ J,

which take into account the fact that J may regarded as a standard Levi
subgroup of either G or L. Of course,

Wσ(L) ⊆Wσ(G).

Suppose then we are given two elements in one summand of C∗
r (G/N)∗, say

S1, S2 ∈ K(IndLQHσ, Ind
G
QN Hσ)Wσ(L)

(the complex conjugates are present as a result of our definition of the adjoint
module). We define

(8.3)
〈
S1, S2

〉
C∗

r (G)
= AvWσ(G)(S1S

∗
2) ∈ K(IndGQN Hσ)

Wσ(G),

where on the right-hand side we have taken the average over the action of
the finite group Wσ(G) on the C∗-algebra K(IndGQN Hσ).

The formula (8.3) satisfies the algebraic requirements for a Hilbert module
inner product. In addition, the [Q, σ]-summand that we are studying is
complete in the norm associated to the inner product. This is because

〈
S, S

〉
C∗

r (G)
= AvWσ(G)(SS

∗) ≥
|Wσ(L)|

|Wσ(G)|
SS∗,

and so, since ‖SS∗‖ = ‖S∗S‖,

(8.4) ‖S‖2C∗

r (G/N)∗ ≥
|Wσ(L)|

|Wσ(G)|
‖S‖2C∗

r (G/N).

Therefore we obtain a Hilbert C∗
r (G)-module structure on the [Q, σ]-summand

of C∗
r (G/N)∗, as required.

To complete the construction we need to show that the (complex conju-
gate of the) Hilbert module direct sum (8.2), which is the completion of the
algebraic direct sum in the C∗

r (G/N)-norm, is also the Hilbert module direct
sum in the C∗

r (G/N)∗-norm.
Each summand of the Hilbert module is supported, as either a Hilbert

C∗
r (G)-module or a Hilbert C∗

r (L)-module, in a single summand of the re-
duced group C∗-algebra (that is, all the inner products lie in a single sum-
mand in the direct sum decomposition of the C∗-algebra). Moreover there
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is a uniform bound on the number of Hilbert module summands that are
supported in any given C∗-algebra summand. Finally, in addition to the
inequality (8.4) we also have the inequality

‖S‖2C∗

r (G/N) ≥ ‖S‖
2
C∗

r (G/N)∗

in each Hilbert module summand. So the C∗
r (G/N)-norm in each summand

is bounded uniformly by a multiple of the C∗
r (G/N)∗-norm, and vice versa.

It follows that the C∗
r (G/N)-norm and the C∗

r (G/N)∗-norm are bounded by
multiples of each other on the algebraic direct sum, so the completion in the
two norms agree, as required.

8.2 Definition. Let G be a real reductive group and let P = LN be a
parabolic subgroup of G. We shall denote the correspondence from C∗

r (L) to
C∗
r (G) just constructed by

C∗
r (N\G) = C∗

r (G/N)∗.

8.3 Remark. The notation reflects the fact that the L-G-bimodule C∗
r (G/N)∗

can be viewed as a completion of C∞
c (N\G), with the left L-action and right

G-action defined analogously to our approach in Section 4 to the actions on
C∞
c (G/N). One associates to a function f ∈ C∞

c (N\G) the function

f ∗ : gN 7→ f(Ng−1)

on G/N .

8.4 Definition. If H is a Hilbert space carrying a tempered unitary rep-
resentation of G, or in other words a nondegenerate representation of the
C∗-algebra C∗

r (G), then the parabolic restriction of H is the Hilbert space

ResGP H = C∗
r (N\G)⊗C∗

r (G) H,

together with the tempered unitary representation of L that it carries.

Here are the results of some easy sample calculations, along with some
remarks about parabolic restriction as it is understood from a more standard
representation-theoretic point of view.

In each case the calculation is carried out using the explicit forms of
C∗
r (G) and C∗

r (G/N) that we have determined in the paper. In other words
the calculations, though short, are far from basic, in that they presuppose a
great deal of representation theory of the sort relied upon in this paper.
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8.5 Example. The first thing to be said is that if an irreducible represen-
tation π is square-integrable on the compactly generated part of G, then
ResGP Hπ = 0 for all proper parabolic subgroups P ⊆ G. This is because
C∗
r (G) can be written as a sum of two complementary ideals, one acting

trivially on Hπ and the other acting trivially on C∗
r (N\G).

In contrast, the usual (left) adjoint to parabolic induction considered
in representation theory (the space of n-coinvariants of a (g, K)-module)
is nonzero in this and indeed any admissible case, by Casselman’s famous
subrepresentation theorem.

8.6 Example. Consider next a principal series representation IndGP Hσ⊗ϕ. If
the isotropy group Wσ,ϕ of Definition 6.3 is trivial (and so, for example, by
Theorem 6.6 the representation is irreducible), then

ResGP IndGP Hσ⊗ϕ
∼=

⊕

w∈W

Hw(σ⊗ϕ)

This is consistent with the standard situation in representation theory.

8.7 Example. More interesting, perhaps is the case of a principal series
representation for which the intertwining group Wσ,ϕ is large. Consider for
example the base of the spherical principal series. Here one has

ResGP IndGP C0
∼= C0.

As in Example 8.5, this is smaller than the space of n-coinvariants of the
associated (g, K)-module.

As we have already mentioned, the central fact about the functor of
parabolic restriction, which we shall establish in [CCH14], is as follows.

8.8 Theorem. The functor ResGP , from tempered unitary representations of
G to tempered unitary representations of L, is both left and right adjoint to
the functor IndGP of parabolic induction.

The proof is not difficult, granted the structure theory for C∗
r (G/N) that

we have developed here, but it involves a separate set of operator-algebraic
ideas, and it is for this reason that we have chosen to defer it.

8.9 Remark. Let us close this section by making a few informal comments
for the benefit of those who are familiar with Bernstein’s second adjoint theo-
rem for smooth representations of reductive p-adic groups [Ber92]. Bernstein
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begins by observing that there is a natural candidate unit map for his ad-
junction. It takes the form of a bimodule map

C∞
c (L) −→ Cc(N \G)⊗C∞

c (G) C
∞
c (G/N),

where N is the unipotent subgroup opposite to N , and it is associated to the
inclusion of N · L ·N as an open subset in G.

Passing to C∗-algebras and Hilbert modules (in either the real or the p-
adic contexts) one can ask, does Bernstein’s map extend to completions? It
does not. However it is reasonably well-behaved as an unbounded operator
(it is regular [Lan95, Chapter 9]).

Another manageable problem is the appearance of N in place of a second
copy of N (as we use in this paper and its sequel). The C∗-correspondences
associated to the two different unipotents are isomorphic.

After switching N for N , the unit map that arises from Theorem 8.8 can
be viewed as a bounded transform (in roughly the sense of [Lan95, Chapter
10]). But we emphasize that it exists only at the Hilbert space level, not the
Hilbert module level.

In conclusion, then, Bernstein’s unit, and hence his adjunction, is distinct
from that of Theorem 8.8, but related to it.

A perhaps more interesting and more fundamental observation is that at
the level of Harish-Chandra’s Schwartz space (see the next section) and its
associated bimodules, Bernstein’s unit is indeed well-defined. Moreover we
have checked for G = SL(2,R) that the counterpart of Bernstein’s theorem
is true (and we believe it is true generally). See [CH16] for some prelimi-
nary computations in this direction; a fuller treatment of these matters is in
preparation.

9 Relation to the Plancherel Formula

We shall close this paper with a calculation that relates the inner product
on the adjoint correspondence C∗

r (N\G) to the Plancherel formula.
It will be convenient to work with Harish-Chandra’s Schwartz space C(G).

This is a Fréchet space of smooth functions on G that contains as a dense
subspace the smooth and compactly supported functions. The Schwartz
space is included continuously as a dense subspace in both L2(G) and C∗

r (G).
See [HC66, Part I] and, for an exposition, [Wal88, Chapter 7]. In every
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irreducible representation of C∗
r (G) the functions in C(G) act as Hilbert-

Schmidt operators.
We begin by reviewing the Plancherel formula for G (and for this purpose

we shall not need to fix yet a parabolic subgroup P ⊆ G).
Choose a representative (P, σ) for each of the associate classes [P, σ] for

G, as in Definition 5.2. There is a Langlands decomposition P =MPAPNP ,
and, as we noted earlier the group AP , which consists entirely of positive-
definite matrices, is isomorphic to its Lie algebra via the exponential map.
So AP carries the structure of a vector space, and we can speak its space
of Schwartz functions in the ordinary sense of harmonic analysis. The same
goes for the unitary (Pontrjagin) dual ÂP . By a tempered measure on ÂP we
mean a smooth measure for which integration extends to a continuous linear
functional on the Schwartz space.

Finally, let us write
πσ,ϕ = IndGP (σ ⊗ ϕ)

for the representation of G parabolically induced from the representation
σ ⊗ ϕ of L = MPAP . Using this terminology and notation, the general
structure of Harish-Chandra’s Plancherel formula for the group G [HC76] is
as follows (see [Wal92, Chapter 13] for an exposition).

9.1 Theorem. There are unique smooth, tempered, Wσ-invariant measures
mP,σ on the spaces ÂP such that

‖f‖2L2(G) =
∑

[P,σ]

∫

ÂP

‖πσ,ϕ(f)‖
2
H-S

dmP,σ(ϕ),

for every f ∈ C(G).

As ϕ ∈ ÂP varies, the Hilbert spaces IndGP Hσ⊗ϕ can be identified with one
another as representations of K. Denote by IndGP Hσ this common Hilbert
space (as we have done earlier) and form the Hilbert space tensor product

(9.1) L2
(
ÂP , mP,σ

)
⊗L2

(
IndGP Hσ

)
,

where L2(IndGP Hσ) denotes the Hilbert space of Hilbert-Schmidt operators
on IndGP Hσ.

If f ∈ C(G) is K-finite, meaning that its left and right K-translates span
a finite-dimensional subspace of C(G), then for every pair (P, σ) the function

ÂP ∋ ϕ 7→ πσ,ϕ(f) ∈ L
2(IndGP Hσ)
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is a Schwartz function from ÂP into a K-finite part of L2(IndGP Hσ), meaning
a finite-dimensional subspace that is invariant under the left and right actions
of K. We can regard the function as an element of the Hilbert space tensor
product (9.1).

9.2 Definition. Let f ∈ C(G) be a K-finite function. Its Fourier transform
is the element of the direct sum Hilbert space

⊕

[P,σ]

L2
(
ÂP , mP,σ

)
⊗ L2

(
IndGP Hσ

)

determined by the operator-valued functions ϕ 7→ πσ,ϕ(f).

The Plancherel formula can be reformulated in these terms, as follows.

9.3 Theorem. The Fourier transform, defined initially on K-bi-finite func-
tions in C(G), extends to an isometric linear map

L2(G) −→
⊕

[P,σ]

L2
(
ÂP , mP,σ

)
⊗L2

(
IndGP Hσ

)
.

We shall also need the following determination of the range of the Fourier
transform. See [Art83, Chap. 3, Section 1].

9.4 Theorem. The Fourier transform is a Hilbert space isometry from L2(G)
onto the Hilbert subspace

⊕

[P,σ]

[
L2

(
ÂP , mP,σ

)
⊗ L2

(
IndGP Hσ

)]Wσ(G)

⊆
⊕

[P,σ]

L2
(
ÂP , mP,σ

)
⊗L2

(
IndGP Hσ

)
.

We shall use this fact to calculate the adjoint to the Fourier transform in
Definition 9.2.

9.5 Definition. Let h be a Schwartz-class function from ÂP into a K-finite
part of L2(IndGP Hσ). The wave packet associated to h is the scalar function

(9.2) ȟ(g) =

∫

ÂP

Trace
(
πσ,ϕ(g

−1)h(ϕ)
)
dmP,σ(ϕ).

on the group G.
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A fundamental theorem of Harish-Chandra asserts that wave packets are
Schwartz functions on G. See for example [Wal92, Theorems 12.7.1 and
13.4.1].

9.6 Theorem. The wave packets (9.2) associated to the Schwartz-class func-

tions from ÂP into the K-finite parts of L2(IndGP Hσ) all belong to the Harish-
Chandra Schwartz space C(G).

We can now carry out the following crucial computation involving wave
packets, which is a simple consequence of Theorem 9.4.

9.7 Proposition. If f is a Harish-Chandra Schwartz function on G, and if
h is a Schwartz function from AP to the K-finite part of L2(IndGP Hσ), then

〈f, ȟ〉L2(G) = 〈f̂ , h〉L2(Â,mP,σ)⊗L2(IndG
P Hσ)

.

Proof. We calculate that

〈f, ȟ〉L2(G) =

∫

G

f(g) ȟ(g) dg

=

∫

G

f(g)

∫

ÂP

Trace
(
πσ,ϕ(g

−1) · h(ϕ)
)
dmP,σ(ϕ)dg

=

∫

ÂP

Trace
(∫

G

f(g)πσ,ϕ(g
−1) dg · h(ϕ)

)
dmP,σ(ϕ)

=

∫

ÂP

Trace
(
πσ,ϕ(f)

∗ h(ϕ)
)
dmP,σ(ϕ)

= 〈f̂ , h〉L2(ÂP ,mP,σ)⊗L2(IndG
P Hσ)

,

as required.

9.8 Corollary. The wave-packet operator h 7→ ȟ, defined on Schwartz func-
tions with values in K-finite parts of the Hilbert-Schmidt spaces L2(IndGP Hσ),
extends to a bounded linear operator

⊕

[P,σ]

L2
(
ÂP , mP,σ

)
⊗L2

(
IndGP Hσ

)
−→ L2(G)

that is adjoint to the Fourier transform.
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Now if h ∈ L2
(
ÂP , mP,σ

)
⊗ L2

(
IndGP Hσ

)
, then define AvWσ

(h) to be the
average over the action of the finite group Wσ:

AvWσ(G)(h)(ϕ) =
1

|Wσ|

∑

w∈Wσ

w
(
h(w−1(ϕ))

)
.

The averaging operator

AvWσ(G) : L
2
(
ÂP , mP,σ

)
⊗ L2

(
IndGP Hσ

)
−→ L2

(
ÂP , mP,σ

)
⊗L2

(
IndGP Hσ

)

is the orthogonal projection onto the Wσ(G)-invariant part of the tensor
product.

9.9 Corollary. The [P, σ]-component of the Fourier transform of the wave
packet ȟ is given by the formula

πϕ(ȟ) = AvWσ(G)(h)(ϕ).

The other components of the Fourier transform are zero.

We are ready to give a formula for our C∗
r (G)-valued inner product on

the summand
[
K
(
IndLQHσ, Ind

G
QN Hσ

)Wσ(L)
]∗
⊆ C∗

r (G/N)∗

as in (8.2). Write

K
(
IndLQHσ, Ind

G
QN Hσ

)Wσ(L) ∼= C0

(
Â,K(IndLQHσ, Ind

G
QN Hσ)

)Wσ(L)
,

and suppose we are given two functions

S1, S2 ∈ C0

(
ÂP ,K(Ind

L
QHσ, Ind

G
QN Hσ)

)Wσ(L)

that are in fact Schwartz functions from ÂP into a finite part of the Hilbert-
Schmidt space L2(IndLQHσ, Ind

G
QN Hσ).

9.10 Theorem. Given S1 and S2 as above, the inner product

〈S1, S2〉C∗

r (G) ∈ C
∗
r (G)

is the following Harish-Chandra Schwartz function on G:

(9.3) 〈S1, S2〉C∗

r (G) =
[
g 7→

∫

ÂP

Trace
(
S2(ϕ)

∗πσ,ϕ(g
−1)S1(ϕ)

)
dmP,σ(ϕ)

]

43



Proof. By definition, the inner product is the unique element of C∗
r (G) that

is equal to
AvWσ(G)(S1S

∗
2)

in the [QN, σ]-component of the direct sum decomposition (6.3) of C∗
r (G),

and that is zero in the other components of the direct sum decomposition.
See (8.3). If we write the right-hand side of (9.3) as

g 7→

∫

ÂP

Trace
(
πσ,ϕ(g

−1)S1(ϕ)S2(ϕ)
∗
)
dmP,σ(ϕ)

using the trace property, then we see from Corollary 9.9 that this function
has precisely the required property.
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